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Abstract. We determine the uncertainties on observables arising from the errors on the experimental data
that are fitted in the global MRST2001 parton analysis. By diagonalizing the error matrix we produce
sets of partons suitable for use within the framework of linear propagation of errors, which is the most
convenient method for calculating the uncertainties. Despite the potential limitations of this approach we
find that it can be made to work well in practice. This is confirmed by our alternative approach of using
the more rigorous Lagrange multiplier method to determine the errors on physical quantities directly.
As particular examples we determine the uncertainties on the predictions of the charged-current deep-
inelastic structure functions, on the cross-sections for W production and for Higgs boson production via
gluon–gluon fusion at the Tevatron and the LHC, on the ratio of W − to W+ production at the LHC and
on the moments of the non-singlet quark distributions. We discuss the corresponding uncertainties on the
parton distributions in the relevant x, Q2 domains. Finally, we briefly look at uncertainties related to the
fit procedure, stressing their importance and using σW , σH and extractions of αS(M2

Z) as examples. As a
by-product of this last point we present a slightly updated set of parton distributions, MRST2002.

1 Introduction

Recently, much attention has been focused on uncertain-
ties associated with the parton distributions that are de-
termined in the next-to-leading order (NLO) global anal-
yses of a wide range of deep inelastic and related scat-
tering data. There are many sources of uncertainty, but
they can be divided into two classes: those which are as-
sociated with the experimental errors on the data that are
fitted in the global analysis and those which are due to
what can loosely be called theory errors. In this latter cat-
egory we have uncertainties due to (i) NNLO and higher-
order DGLAP contributions, (ii) effects beyond the stan-
dard DGLAP expansion, such as extra lnx and ln(1 − x)
terms, higher twist and saturation contributions, (iii) the
particular choice of the parametric form of the starting
distributions, (iv) heavy target corrections, (v) model as-
sumptions, such as s = s̄. In order to estimate some of
these ‘theory’ errors, we can also look at the uncertainties
arising from different choices of the data cuts (Wcut, xcut,
Q2

cut), defined such that data with values of W , x or Q2

below the cut are excluded from the global fit. This ap-
proach indicates where the current theory is struggling to
fit the data compared to other regions.

Here we study the uncertainties due to the errors on
the data, and leave the discussion of the ‘theory’ uncer-
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tainties to a second paper. Other groups [1]–[7] have also
concentrated on the experimental errors and have
obtained estimates of the uncertainties on parton distri-
butions within a NLO QCD framework, using a variety
of competing procedures. Of course, the parton distribu-
tions are not, themselves, physical quantities. However,
using the standard approach of the linear propagation of
errors, these uncertainties of the parton distributions can
be translated into uncertainties on observables. Therefore,
we first follow the general approach in [4] and [5], the Hes-
sian method, and diagonalize the error matrix, parameter-
izing an increase in χ2 of the fit in terms of a quadratic
function of the variation of the parameters away from their
best fit values. This gives us a number of sets of partons
with variations from the minimum in orthogonal direc-
tions which can be used in a simple manner to calculate
the uncertainty on any physical quantity. However, this
approach depends for its reliability on the assumption that
the quadratic dependence on the variation of the parton
parameters is very good. We find that this approximation,
with some modifications of the precise framework, i.e. the
elimination of some parameters and rescaling of others,
can be made to work well. We make available 30 sets of
partons – 2 for each of the 15 eigenvector directions in
parton parameter space – which can be used to calculate
the uncertainties on any physical quantity.

Despite its convenience, the Hessian approach does suf-
fer from some problems if one looks at it in detail, and if
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one tries to extrapolate results, in particular if we con-
sider large increases in χ2. It is also not, in principle, the
most suitable method when allowing αS to vary as one of
the free parameters in the fit. Hence, in this paper we also
investigate the uncertainties on observables directly. In or-
der to do this we apply the Lagrange multiplier method
[8] to the observables themselves, therefore avoiding some
of the approximations involved in the linear propagation
of errors from partons to the observables, and confirming
that these approximations do not usually cause serious
problems. When using this Lagrange multiplier approach,
the resulting sets of parton distributions, which corre-
spond to the extreme values of each observable, can to a
certain extent be thought of as the maximum allowed vari-
ation of the dominant contributing partons in the relevant
kinematic (x, Q2) domain. We select observables which
are particularly relevant for experiments at present and
future colliders, and which illustrate the uncertainties on
specific partons in a variety of kinematic (x, Q2) domains.
In order to determine the true uncertainty on quantities
we also let αS(M2

Z) vary along with the parameters de-
scribing the parton distributions directly, which is easy to
implement in this approach. Some quantities are then far
more sensitive to αS(M2

Z) than others. Fortunately our
global fit [9] produces a value of αS(M2

Z) which is consis-
tent with the world average, with the same type of error,
i.e., αS(M2

Z) = 0.119 ± 0.002. Hence, it is completely nat-
ural to simply let αS(M2

Z) vary as a free parameter in
the fit in the same way as all the other parameters when
determining uncertainties. However, we also perform an
investigation of the uncertainties with αS(M2

Z) fixed at
0.119 in order to study more directly which variations in
the parton distributions are responsible for extreme vari-
ations in given physical quantities, and to compare with
the results of the Hessian approach.

The physical observables that we select as examples
in this introductory study are, first, the charged-current
structure functions FCC

2 (e±p) for deep inelastic scatter-
ing at high x and Q2 at HERA. These observables al-
most directly represent the d, u valence quarks at high
x and Q2, where deep inelastic data do exist [10]–[12],
but have errors of 25% or more at present. The preci-
sion on these data is expected to increase dramatically in
the near future. Second, we determine the uncertainties
on the cross-sections σW and σH , for W boson produc-
tion and for the production of a Higgs boson of mass1
MH = 115 GeV by gluon fusion respectively, at Tevatron
and LHC energies. The cross section σW is sensitive to
the sea quarks (and also, at the Tevatron energy, weakly
sensitive to the valence quarks) in a range of rapidity cen-
tered about x ∼ MW /

√
s, and for Q2 ∼ M2

W . Similarly,
σH is sensitive to the gluon distribution in the domain
x ∼ MH/

√
s and Q2 ∼ M2

H .
As a third example we determine the uncertainty on

the ratio of W− to W+ production at the LHC energy.
This ratio is expected to be extremely accurately mea-

1 There is nothing special about the choice of 115 GeV. We
may choose different values in order to probe the gluon in dif-
ferent x, Q2 domains

sured in the LHC experiments. Other relevant examples,
which we study, are the uncertainties of the moments
of the non-singlet (u–d) quark distributions. These are
quantities for which lattice QCD predictions are becom-
ing available, see, for example, [13,14].

The same techniques can be easily and quickly applied
to a wide variety of other physical processes sensitive to
different partons and different domains. Besides giving a
direct evaluation of the uncertainties on the observables,
we can, in principle, unfold this information to map out
the uncertainties on NLO partons over the whole kine-
matic domain where perturbative QCD is applicable.

The plan of the paper is as follows. In Sect. 2 we discuss
the Hessian method, and outline our extraction of different
parton distribution sets using this approach. In particu-
lar we highlight the problems encountered, and how they
are dealt with in order to obtain reliable results. We make
the sets of partons obtained publicly available. In Sect. 3
we briefly recall the elements of the Lagrange multiplier
method. In the following four sections we determine the
uncertainties of the observables that we have mentioned
above. This will involve a series of global fits in which
the observables are constrained at different values in the
neighbourhood of their values obtained in the optimum
global fit. In each case we explore, and discuss, the al-
lowed variation of the dominantly contributing partons.
Using this more rigorous method we also confirm the gen-
eral appropriateness of the Hessian approach, but discuss
where it can start to break down.

Finally, in Sect. 8, we summarize and briefly investi-
gate the uncertainties associated with the initial assump-
tions made in performing the global fit. In order to do this
we compare the W and H boson predictions with those
obtained using both a slightly updated set of our own par-
tons, MRST2002, and using the CTEQ6 partons [5]. (All
the results in Sects. 2–7 are based on MRST2001 partons
[9].) We find that for the comparison with CTEQ some of
the variations in predictions are surprisingly large. We also
illustrate the same result for the extractions of αS(M2

Z)
by various different groups. This implies that uncertainties
involved with initial assumptions and also with theoreti-
cal corrections can be more important than those due to
errors on the data.

2 The Hessian method

The basic procedure involved in this approach is discussed
in detail in [4], but we briefly introduce the important
points here. In this method one assumes that the deviation
in χ2 for the global fit2 from the minimum value χ2

0 is
quadratic in the deviation of the parameters specifying
the input parton distributions, ai, from their values at
the minimum, a0

i . In this case we can write

∆χ2 = χ2 − χ2
0 =

n∑
i=1

n∑
j=1

Hij(ai − a0
i )(aj − a0

j ), (1)

2 The data that are fitted can be found in [6, 10–12] and
[15]–[29]. We treat the errors as in [9]
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where Hij is an element of the Hessian matrix, and n is the
number of free input parameters. In this case the standard
linear propagation of errors allows one to calculate the
error on any quantity F using the formula

(∆F )2 = ∆χ2
n∑

i=1

n∑
j=1

∂F

∂ai
Cij(a)

∂F

∂aj
, (2)

where Cij(a) = (H−1)ij is the covariance, or error matrix
of the parameters, and ∆χ2 is the allowed variation in
χ2. Hence, in principle, once one has either the Hessian or
covariance matrix (and a suitable choice of ∆χ2) one can
calculate the error on any quantity.

However, as demonstrated in [4], it more convenient
and more numerically stable to diagonalize either the Hes-
sian or covariance matrix, and work in terms of the eigen-
vectors. Since the Hessian and covariance matrices are
symmetric they have a set of orthogonal eigenvectors de-
fined by

n∑
j=1

Cij(a)vjk = λkvik. (3)

Moreover, because variations in some directions in param-
eter space lead to deterioration in the quality of the fit far
more quickly than others, the eigenvalues λk span several
orders of magnitude. Hence it is helpful to work in terms of
the rescaled eigenvectors eik =

√
λkvik. Then the param-

eter displacements from the minimum may be expressed
as

∆ai ≡ (ai − a0
i ) =

n∑
k=1

eikzk, (4)

or using the orthogonality of the eigenvectors

zi = (λi)−1
n∑

k=1

eki∆ak, (5)

i.e., the zi are the appropriately normalized combinations
of the ∆ak which define the orthogonal directions in the
space of deviation of parton parameters. In practice a zi

is often dominated by a single ∆ak
3.

The error determination becomes much simpler in
terms of the zi. The increase in χ2 is

∆χ2 =
n∑

i=1

z2
i , (6)

i.e., the surface of constant χ2 is a hyper-sphere of given
radius in z-space. Similarly the error on the quantity F is
now

∆F =
√

∆χ2

[ n∑
i=1

(
∂F

∂zi

)2 ]1/2

. (7)

3 CTEQ have even implemented the diagonalization proce-
dure in the fitting procedure itself in order to improve numer-
ical stability [30]. We do not think this will have effects sig-
nificant enough to outweigh the inherent errors in the Hessian
approach described below

Thus it is convenient to introduce parton sets S±
k for each

eigenvector direction, i.e., from (4) we define

∆ai(S±
k ) = ±teik, (8)

where the tolerance t is defined by t =
√

∆χ2 and ∆χ2 is
the allowed deterioration in fit quality for the error deter-
mination. Then, assuming the quadratic behaviour of F
about the minimum, (7) becomes the simple expression

(∆F ) =
1
2

[
n∑

k=1

(
F (S+

k ) − F (S−
k )

)2

] 1
2

. (9)

If everything were ideal this framework would provide
us with a simple and efficient method for calculating the
uncertainty due to experimental errors on any quantities,
where we would use the standard choice of ∆χ2 = 1. How-
ever, the real situation is not so simple, and there are two
major complications we must overcome in order to obtain
reliable results.

Although, in principle, the 1σ uncertainty in any cross-
section should be given by ∆χ2 = 1, the complicated na-
ture of the global fitting procedure, where a large number
of independent data sets are used, results in this being an
unrealistically small uncertainty [31]. This is undoubtedly
due to some failure of the theoretical approximation to
work absolutely properly over the full range of data, which
introduces the type of theoretical errors outlined in the In-
troduction, and also due to some sources of experimental
error not being precisely quantified. Both problems are in
practice extremely difficult to surmount. We shall implic-
itly ignore the potential theoretical error in this paper,
but account for the lack of ideal behaviour in the frame-
work by determining the uncertainties using a larger ∆χ2.
We estimate ∆χ2 = 50 to be a conservative uncertainty
(perhaps of the order of a 90% confidence level or a little
less than 2σ) due to the observation that an increase of
50 in the global χ2, which has a value χ2 = 2328 for 2097
data points, usually signifies that the fit to one or more
data sets is becoming unacceptably poor. We find that an
increase ∆χ2 of 100 normally means that some data sets
are very badly described by the theory. Though this esti-
mation does not rely on any real mathematical foundation
we do not think it is any less valid than the approaches
used in e.g. [5] or [1,7], both of which ultimately appeal
to some value judgment rather than using all available
information in a statistically rigorous manner, and ulti-
mately give similar results. The approaches [2,3,6] do use
∆χ2 = 1 but either rely on much smaller and more inter-
nally compatible data sets, or in some cases have rather
small errors.

The second complication is the breakdown of the sim-
ple quadratic behaviour in terms of variations of the pa-
rameters, i.e., the fact that (1) may receive significant
corrections and the simple linear propagation of errors is
therefore not accurate. Of course, we expect some devia-
tions from this simple form for very large ∆χ2, but un-
fortunately very significant deviations can occur for rela-
tively small ∆χ2, as outlined below. Due to the very large
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amount of data in our global fit, we have a lot of param-
eters in order to allow sufficient flexibility in the form of
the parton distributions. Each of the valence quarks and
the total sea quark contribution are parameterized in the
form

xq(x, Q2
0) = A(1 − x)η(1 + εx0.5 + γx)xδ, (10)

where for the valence quarks the normalization A is set
by the number of valence quarks of each type. Because we
find it necessary to have a negative input gluon at low x
the gluon parameterization has been extended to

xg(x, Q2
0) = Ag(1 − x)ηg (1 + εgx

0.5 + γgx)xδg

−A−(1 − x)η−x−δ− , (11)

where Ag is determined by the momentum sum rule, and
η− can be set to some fixed large value, e.g. 10 or 20, so
that the second term only influences large x. The combina-
tion ∆q = ū − d̄ has a slightly different parameterization,
i.e.,

x∆q(x, Q2
0) = A(1 − x)η(1 + γx + δx2)xδ. (12)

Overall, this gives 24 free parameters. In our standard fits
we allow all these parameters to vary. However, when in-
vestigating in detail the small departures from the global
minimum we notice that a certain amount of redundancy
in parameters leads to potentially disastrous departures
from the behaviour in (1). For example, in the negative
term in the gluon parameterization very small changes
in the value of δ− can be compensated almost exactly
by a change in A− and (to a lesser extent) in the other
gluon parameters over the range of x probed, and therefore
changes in δ− lead to very small changes in χ2. However,
at some point the compensation starts to fail significantly
and the χ2 increases dramatically. Hence, this certain de-
gree of redundancy between δ− and A− leads to a severe
breaking of the quadratic behaviour in ∆χ2. Essentially
the redundancy between the parameters leads to a very
flat direction in the eigenvalue space (a very large/small
eigenvalue of the covariance/Hessian matrix) which means
that cubic, quartic etc. terms dominate. During the pro-
cess of diagonalization this bad behaviour feeds through
into the whole set of eigenvectors to a certain extent.

Therefore, in order that the Hessian method work at
all well we have to eliminate the largest eigenvalues of the
covariance matrix, i.e., remove the redundancy from the
input parameters. In order to do this we simply fix some of
the parameters at their best fit values so that the Hessian
matrix only depends on a subset of parameters that are
sufficiently independent that the quadratic approximation
is reasonable. In fact we finish up with 15 free parameters
in total – 3 for each of the 5 different types of input par-
ton. In particular, fixing the other parameters at the best
fit values we find that ηg, δg and δ− are sufficient for the
gluon – one for high x, one for medium x and one for low
x. However, we emphasize that we cannot simply set the
other parameters to zero. For example A− must be of a
size as to allow a sufficiently negative input gluon at low
x with a sensible value of δ−, but we cannot allow it to

vary simultaneously with δ−. We could possibly allow one
or two more parameters to be free, but judge that the de-
terioration in the quality of the quadratic approximation
does not outweigh the improvements due to increased flex-
ibility in the parton variations. We note that this problem
seems to be a feature of the full global fits obtained by
CTEQ and MRST, and that the other fitting groups have
not yet needed to introduce enough parameters to notice
such redundancy. It has clearly been noticed by CTEQ
though, since in [4] they only have 16 free parameters out
of a possible 22, and in [5], where they use a significantly
altered type of parameterization, they have only 20 free
parameters out of a possible 26.

Hence, we produce 30 sets of parton distributions la-
beled by S±

k to go along with the central best fit; that is 15
“+” sets corresponding to each eigenvector direction, and
15 “–” sets4. Even though we have limited the number of
free parameters in the calculation of the Hessian matrix,
we note that we still have significant departure from the
ideal quadratic behaviour. For the 10 or so lowest eigenval-
ues of the covariance matrix the quadratic approximation
is very good – the distance needed to go along one of the
zi to produce ∆χ2 = 50 being the expected

√
50 = 7.07

to good accuracy in both “+” and “–” directions. How-
ever, for 4 or 5 of the largest eigenvalues of the covari-
ance matrix, corresponding mainly to the large-x d quark,
large-x gluon and ū− d̄ distributions, the absolute scaling
and symmetry break down somewhat. In the very worst
case of the largest eigenvalue, the scale factors to produce
∆χ2 = 50 are 9.5 and 4.5 in the two opposite directions.
In order to produce the sets corresponding to ∆χ2 = 50
we have to multiply the parton deviations required for
∆χ2 = 1 by these scale factors rather than the expected
7.07. (In fact we do this for all 30 sets, but in most cases
the scale factor is in the range 6.5–7.5.) Hence, as in [4,
5], this necessitates the supply of both “+” and “–” sets,
whereas in the quadratic approximation one could easily
be obtained from the other. Indeed from Fig. 9 of [4] it is
clear that CTEQ encounter a breakdown of the quadratic
behaviour of much the same type that we do.

Using the 30 parton sets S±
k corresponding to the 15

eigenvector directions for variations of the partons about
the minimum χ2, one can use (7) to calculate the error
for any quantity, assuming an allowed ∆χ2 = 50. In fact
it has been proposed [32] that one may also account for
some of the asymmetry due to departures from quadratic
behaviour by replacing (9) by the slightly more sophisti-
cated form

4 In order to produce the errors on the parton distribu-
tions a higher numerical accuracy was required than that used
when we previously found just the “best fit”. This results
in the partons from the central fit being very slightly differ-
ent to the standard MRST2001 partons, and we label them
by MRST2001C. In fact some of the input parameters are
quite different to those in the MRST2001 default, but the par-
tons themselves differ by fractions of a percent. This is an
example of the redundancy in some input parameters noted
above. The 31 parton sets (S±

k , MRST2001C) are available at
http://durpdg.dur.ac.uk/hepdata/mrs
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Uncertainty of up valence quark from Hessian method
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Fig. 1. The uncertainty on uV (x, Q2) at Q2 = 5 GeV2 and
100 GeV2 obtained using the Hessian approach with ∆χ2 = 50.
Also shown is the CTEQ6M distribution. The uncertainties are
shown relative to the MRST2001 set of partons [9]; the label
C is explained in footnote 4

(∆F )+ =

[
n∑

k=1

(
max(F (S+

k ) − F (S0
k), F (S−

k )

−F (S0
k), 0)

)2

] 1
2

(∆F )− =

[
n∑

k=1

(
max(F (S0

k) − F (S+
k ), F (S0

k)

−F (S−
k ), 0)

)2

] 1
2

, (13)

where S0
k represents the best fit set of partons. In [32] and

[33] examples are discussed where the use of (13) instead of
(9) leads to not only an asymmetric error, but also a larger
uncertainty overall. We find only fairly minor effects, with
no real evidence that (13) leads to markedly more reliable
results than (9), so we use the simpler (9) in this paper.

Uncertainty of down valence quark from Hessian method
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Fig. 2. The uncertainty on dV (x, Q2) at Q2 = 2 GeV2 and
100 GeV2 obtained using the Hessian approach with ∆χ2 = 50.
Also shown is the CTEQ6M distribution. The uncertainties are
shown relative to the MRST2001 set of partons [9]; the label
C is explained in footnote 4

As an example of the use of the Hessian method we
show in Figs. 1–4 the uncertainty on some of the parton
distributions at various values of Q2, namely the uV dis-
tribution, the dV distribution and the gluon distribution
respectively. As one sees, the uV distribution is very well
determined, and the uncertainty shrinks slightly with in-
creasing Q2. The lowest uncertainty is in the region of
x = 0.2 where there are very accurate data which mainly
constrain the valence quarks. At lower x the direct con-
straint is on the sum of valence and sea quarks. The dV dis-
tribution is also well determined in general, but is rather
more uncertain as we go to the highest x values. The gluon
distribution is known less well, but at the highest Q2 has
an uncertainty of as little as 5% for x ∼ 0.05 where it is
constrained by both dF2(x, Q2)/d lnQ2 of the HERA data
and the lowest-ET Tevatron jet data. It becomes very un-
certain for x ≥ 0.4 where only the relatively imprecise
highest-ET jet data provide any information. The frac-
tional uncertainty at very small x decreases very rapidly
as Q2 increases because much of the small-x gluon at
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Uncertainty of gluon from Hessian method
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Fig. 3. The uncertainty on g(x, Q2) at Q2 = 5 GeV2 and
100 GeV2 obtained using the Hessian approach with ∆χ2 = 50.
Also shown is the CTEQ6M distribution. The uncertainties are
shown relative to the MRST2001 set of partons [9]; the label
C is explained in footnote 4

higher Q2 is generated from that at higher x via evolu-
tion. We also show the gluon at Q2 = 2 GeV2 explicitly
in Fig. 4. At this low scale the central gluon is negative
at x = 0.0001, but we see that the gluon may be posi-
tive within the uncertainty. This just about persists if we
go to as low as x = 10−5 at this Q2, but at our input
scale Q2

0 = 1 GeV2 the gluon would be negative for x less
than 0.0005, outside the level of uncertainty chosen. Also
shown on the plots are the CTEQ6M partons. For the dV

distribution the agreement is excellent. For the uV distri-
bution the agreement at x ≥ 0.05 is very good, but there
is a discrepancy below this value. However, in this range,
the valence quarks become very small indeed and the data
only really constrain the total u distribution which is com-
pletely dominated by the sea. This apparent discrepancy
is probably due to parameterization effects, and is irrele-
vant in practice. However, in Fig. 3 we see that the MRST
and CTEQ gluons show a genuine and significant level of
incompatibility. We will comment on this more in Sect. 8.

One might worry that the fixing of some of the pa-
rameters, that determine the input parton distributions,

Uncertainty of gluon from Hessian method
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Fig. 4. The uncertainty on g(x, Q2) at Q2 = 2 GeV2 obtained
using the Hessian approach with ∆χ2 = 50. Also shown is the
CTEQ6M distribution

will cast some doubt on the error obtained. However, we
stressed that these are largely redundant parameters, and
we have checked that the errors obtained (when using
∆χ2 = 50) are indeed compatible with the errors obtained
using more rigorous means, i.e., the Lagrange multiplier
method, in the following sections5. Nevertheless, it is a
sign of the breakdown of the quadratic approximation. Of
more practical concern is the fact that this breakdown
is also exhibited in a non-trivial manner in some of the
eigenvectors used – particularly those eigenvectors associ-

5 We have checked the effects of using (13) instead of (9) in
these comparisons. In all cases the former only introduced a
relatively small asymmetry in the uncertainty, with the aver-
age being very close indeed to the result using the latter. Also,
the asymmetry was of the same sign as that found using the
Lagrangian approach only half the time, i.e. the use of (13) did
not reliably predict the direction of steeper increase of ∆χ2,
even when the asymmetry was quite large. We find this sur-
prising, and have no good explanation. However, it illustrates
the semi-qualitative nature of the Hessian approach compared
to the more rigorous Lagrange Multiplier method
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ated with the least known partons, e.g. the high-x down
quark and gluon. The scaling has been designed to give
correct results if ∆χ2 = 50 is used. However, one cannot
simply extrapolate to different choices of ∆χ2. For exam-
ple if ∆χ2 = 25 were deemed a more suitable choice, in
principle the error would just be that using (7) divided by√

2, but the breakdown of quadratic behaviour does not
guarantee this, especially for some directions in parameter
space. Also, if one wished to be very conservative in the
estimation of an uncertainty, simple extrapolation cannot
reveal when ∆χ2 might start to increase rapidly. We will
see examples of this later.

Also we note that we have performed this analysis for
a fixed value of the coupling constant: αS(M2

Z) = 0.119.
One can in principle include this as another free param-
eter. Indeed we then find that the behaviour obeys the
quadratic approximation quite well and that ∆χ2 = 50
gives an error of about ±0.003, corresponding well to our
error of ±0.002 obtained in [9] using ∆χ2 = 20. We will
discuss extractions of αS(M2

Z) again in Sect. 8. However,
for the Hessian approach there is a slight difference be-
tween varying αS(M2

Z) and varying the parton parame-
ters. When αS(M2

Z) is fixed the maximum error on any
quantity is obtained from some linear combination of our
different parton sets, and in principle one could reproduce
the particular parton set which corresponds to this linear
combination, which would be a perfectly well-defined set
itself. However, a linear combination of αS(Q2) coming
from contributions with different αS(M2

Z) does not actu-
ally correspond to one particular choice of αS(M2

Z) (each
contribution has a branch point at a different value of Q2,
so a linear combination will have multiple branch points),
so one cannot precisely define a particular set of partons
corresponding to a particular αS(M2

Z) for the extreme.
Hence, although the 30 parton sets obtained using the

Hessian approach provide the most convenient framework
for calculating the uncertainties on a physical observable,
for the reasons described above we would also like to study
an alternative approach, partially just to check how well
our adapted Hessian approach really works. A more robust
method, which also allows us to directly investigate the
partons, and αS , corresponding to the extreme variations
of a given physical quantity is the Lagrange multiplier
method. We study this in detail below.

3 Lagrange multiplier method

It is much more rigorous to investigate the allowed vari-
ation of a specific observable by using the Lagrange mul-
tiplier method. This was also one of the approaches used
by the CTEQ collaboration [8]. In this, one performs a
series of global fits while constraining the values σi of one,
or more, physical quantities in the neighbourhood of their
values σ0

i obtained in the unconstrained global fit. To be
precise, we minimize the function

Ψ(λi, a) = χ2
global(a) +

∑
i

λiσi(a) (14)

with respect to the usual set a of parameters, which specify
the parton distributions and the coupling αS(M2

Z). This
global minimization is repeated for many fixed values of
the Lagrange multipliers λi. At the minima, with the low-
est Ψ(λi, a), the observables have the values σi(â) and
the value of χ2

global(â) is the minimum for these particu-
lar values of σi. These optimum parameter sets â depend
on the fixed values of λi. Clearly, when λi = 0, we have
Ψ = χ2

global = χ2
0 and σi = σ0

i . In this way we are able
to explore how the global description of the data deterio-
rates as the σi(â) move away from the unconstrained best
fit values σ0

i . Thus by spanning a range of λi we obtain the
χ2

global profile for a range of values of σi about the best
fit values, σ0

i . In this study we take the best fit values
corresponding to the MRST2001 partons [9].

This procedure involves none of the approximations
involved in the Hessian approach. We can use the full set
of parameters in the fit, obtaining maximum flexibility
in the partons without having to worry about the large
correlations or anticorrelations between some parameters.
We never make any assumption about quadratic depen-
dence on the parameters, and indeed, by using different
values of the Lagrange multipliers, we can map out pre-
cisely how the quadratic approximation breaks down in
the uncertainty for any physical quantity. Also, one pro-
duces a particular set of partons with a particular value
of αS(M2

Z) at every point in the space of cross-sections
for the physical quantities mapped, so the interpretation
of the extremes is more obvious and natural. Hence, in
principle, this is a far superior method of obtaining uncer-
tainties to the Hessian approach. However, it suffers from
the large practical disadvantage that a series of global fits
must be done every time one considers a new quantity. As
examples we investigate a number of interesting physical
cases below.

4 The charged-current
structure functions F CC

2 (e±p)

The ∆χ2 contour plot for the variation of FCC
2 (e+p) and

FCC
2 (e−p) about their predicted values from the uncon-

strained global fit is shown in Fig. 5, where we allow αS to
be a free parameter (unstarred labels) or fix it at the best
fit value of αS(M2

Z) = 0.119 (starred labels). We show
the contours for ∆χ2 = 50, 100, etc. Overall, the ellipses
one would expect from the quadratic approximation for
∆χ2 in Sect. 2 are more or less what one sees, but there
is a certain asymmetry in that χ2 increases rather more
rapidly for an increase in both FCC

2 (e+p) and FCC
2 (e−p)

than for a corresponding decrease in both.
Thus, from Fig. 5, we see that the uncertainties of the

FCC
2 (e+p) and FCC

2 (e−p) structure functions at x = 0.5
and Q2 = 10, 000 GeV2 (due to the experimental errors
on the data in the global fit) are about +15−12 % and ±2%
respectively. In comparison, the values using the Hessian
approach are ±10% and ±2% respectively, in good agree-
ment, although slightly smaller for FCC

2 (e+p). At this
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Fig. 5. ∆χ2 = 50, 100, . . . contours, where ∆χ2 is the in-
crease in χ2 from the global MRST2001 minimum, obtained
by performing new global fits with F CC

2 (e±p) fixed at values in
the neighbourhood of their value in unconstrained MRST2001
fit. The ∆χ2 = 50 contour is taken to represent the er-
rors on F CC

2 (e±p) (arising from the experimental errors on
the data used in the global fit). The extrema sets of partons
(T,U,. . .) are discussed in the text. The dashed contours are
obtained if αS(M2

Z) is allowed to vary. The superimposed solid
∆χ2 = 50, 100 contours are obtained if αS(M2

Z) is fixed at
0.119

value of x the uncertainties in FCC
2 (e+p) and FCC

2 (e−p)
have a particularly simple interpretation since FCC

2 (e+p)
is almost exactly proportional to the valence down quark
distribution, dV , and FCC

2 (e−p) is almost exactly propor-
tional to the uV distribution. This can clearly be seen
in Fig. 6, which shows the u and d distributions for the
extreme sets (T*,U*,V* and W*) corresponding to max-
imum and minimum FCC

2 (e+p) and FCC
2 (e−p) (for the

case of fixed αS(M2
Z)). Rather obviously the d distribution

maximises at large x for the case of maximum FCC
2 (e+p)

and minimises for minimum FCC
2 (e+p), with similar be-

haviour for the u distribution and FCC
2 (e−p). Note how-

ever that in each case the extreme in the parton distribu-
tion is not precisely at x = 0.5, but at slightly higher x,
where the data are less constraining. There are also sum
rules on the partons which must be satisfied. It is also
clear that there is a strong inverse correlation between
the u and d distributions. This is because the data which
constrain the relevant partons are the structure function
measurements F2(lp), F2(ld) and F2(3)(ν(ν̄)p) which are
essentially proportional to 4u + d, u + d and u + d re-
spectively, where u ∼ 4d at x = 0.5. This constrains u far
more than d as we have seen, but means that for maximum

variation in the partons a change in u must be compen-
sated by a much larger opposite change in d. The result
that the major axis of the ellipse for given change in ∆χ2

is approximately aligned along 8FCC
2 (e+p) − FCC

2 (e−p)
(i.e., 8d − u) is therefore not at all surprising. The rate
of quickest increase in χ2 is then along 8d + u, where the
changes in the partons add in such a way as to maximise
changes in the measured structure functions.

We see that allowing αS(M2
Z) to also vary allows the

error ellipses to grow slightly, mainly in width. Now the
maximum and minimum allowed values of FCC

2 (e−p) (or
u) correspond to αS(M2

Z) = 0.117 and 0.120 and to parton
sets T and V respectively. Most of the constraining data
are for Q2 � 10, 000 GeV2, and must be well fit, but
smaller αS means slower evolution of the quarks and thus
greater values of u and FCC

2 (e−p) at Q2 = 10, 000 GeV2.
Opposite considerations lead to the maximum FCC

2 (e−p).
Since the extrema of FCC

2 (e+p) and d are more involved,
due to the negative correlation with the u distribution,
they are less altered by allowing αS to vary; see sets U
and W. We see that the axes of the ellipse are essentially
unchanged when αS is left free. Thus Fig. 6 is much the
same except that the variations for parton sets T and V
are a little greater than for T∗ and V∗.

It is, of course, the fixed target data which constrain
these cross-sections and the high-x quarks. It is very
largely the BCDMS F2(ed) measurements which are re-
sponsible for the upper extremum in FCC

2 (e+p). The best
fit tends to overshoot these data in the region of x = 0.5,
and a large increase in d makes the fit to these measure-
ments very poor. For the extrema in FCC

2 (e−p) and u, the
deterioration is more evenly spread over pretty much all
the fixed target data at x � 0.5 (with the exception that
the description of the BCDMS F2(d) measurements im-
proves slightly), but the cumulative result is a very poor
fit. One of the worst instances of deterioration is for the
NMC F2(n)/F2(p) ratio.

5 W and H production at the LHC
and Tevatron

The ∆χ2 contour plot for the variation of σW and σH

about their predicted values at the LHC energy from the
unconstrained global fit is shown in Fig. 7, where again
we allow αS to be a free parameter or fix it at αS(M2

Z) =
0.119. Again we show the contours for ∆χ2 = 50, 100, etc.
This time the Hessian approach should work well,
although the ellipses start becoming a little rectangular.
Allowing αS(M2

Z) to vary, we see that the uncertainties of
the W and H cross-sections at the LHC (due to the exper-
imental errors on the data in the global fit) are about +2.5−2.0
% and ±3% respectively, and are positively correlated.

Again this analysis also gives information on the uncer-
tainties of particular parton distributions. To be specific,
the parton sets which correspond to the points A,B,C,D,
on the ∆χ2 = 50 contour in Fig. 7, give the uncertain-
ties in the parton distributions that dominantly deter-
mine σW and σH in the kinematic domain x ∼ 0.005,
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Fig. 6. The u and d quark distributions (at Q2 = 10 and 104 GeV2) of the extrema fits which lie on the ∆χ2 = 50 contour of
Fig. 5 for fixed αS(M2

Z) = 0.119

Q2 ∼ 104 GeV2 relevant to W and H production at the
LHC. The extrema in σW , represented by A and C, cor-
respond to variations in the sea quark distributions, while
the extrema in σH , represented by B and D, correspond to
variations in the gluon distribution and αS(M2

Z). The val-
ues of αS for sets A and C are 0.119 and 0.118 respectively,
both very close to the default MRST2001 value, showing
that σW , which begins at zeroth order, is insensitive to αS .
However, the values of αS for fits B and D are 0.120 and
0.117 respectively, reflecting the fact that σH ∝ α2

S . This
is well illustrated by repeating the entire analysis with αS

fixed at the default value (0.119) obtained in the uncon-
strained global fit [9]. The ∆χ2 = 50 and 100 contours for
this additional analysis are shown by the smaller shapes
in Fig. 7. We can see that the uncertainty on σW is almost
unchanged, while that for σH is reduced to about ±2%.
The corresponding values using the Hessian approach are
±1.8% and ±1.8%, in good agreement but slightly smaller
in each case.

The up quark distribution for each ‘extrema’ set with
fixed αS(M2

Z) is shown in Fig. 8a and the gluon distribu-
tion in Fig. 8b. We see that indeed the parton distributions
do reflect the extrema in the cross-sections in a fairly sim-

ple manner. The quark densities at high x show almost
no variation between fits since they are well constrained
at high x and because the W and H production cross-sec-
tions are sensitive to the partons at an x range centered
at a few ×10−3. Indeed the maximum and minimum W
cross-sections correspond to the maximum and minimum
sea quarks for x ≤ 0.05 at Q2 ∼ 10, 000 GeV2. The maxi-
mum and minimum Higgs cross-sections correspond to the
maximum and minimum gluon distributions in the same
sort of range, although the large x gluon must now de-
crease for increases in the small x partons, and vice versa,
in order to maintain the momentum sum rule. The strong
correlation between the two cross-sections is due to the
fact that at high Q2 the size of the quark distribution at
small x is mainly determined by evolution, and the larger
the small x gluon the stronger the quark evolution (and
vice versa). When αS is left free the resulting partons at
the extrema are similar to the fixed αS results. However,
in this case, their variation is a little larger at smaller Q2,
since the slight changes in αS lead to different rates of
evolution.

For the case of fixed αS the main contributions to ∆χ2

come from the HERA small-x structure function data and,
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Fig. 7. Contours with ∆χ2 = 50, 100 . . . obtained by perform-
ing global fits with the values of σW and σH , at the LHC
energy, fixed in the neighbourhood of their values predicted by
the unconstrained MRST2001 fit. The ∆χ2 = 50 contour is
taken to represent the errors on σW and σH (arising from the
experimental errors on the data used in the global fit). The
extrema sets of partons (A,B. . .) are discussed in the text. The
dashed contours are obtained if αS(M2

Z) is allowed to vary.
The superimposed solid ∆χ2 = 50, 100 contours are obtained
if αS(M2

Z) is fixed at 0.119

because of the changes in the high x gluon, also from the
Tevatron jet data. For the upper extrema in σW and σH

the slope dF2(x, Q2)/d lnQ2 tends to be too large for x ≤
0.001, while for the lower extrema the slope is too small. In
both cases the fit to jet data deteriorates due to the shape
of the high-x gluon becoming wrong. When αS(M2

Z) is
allowed to vary the data which are particularly sensitive
to this also play a role, for example the BCDMS data are
fitted less well when αS(M2

Z) = 0.120 in fit B, and the
NMC data are described less well when αS(M2

Z) = 0.117
in fit D.

The corresponding ∆χ2 contour plot for the Tevatron
is shown in Fig. 9, where again we either allow αS to
be a free parameter or fix it at αS(M2

Z) = 0.119. We
see that the uncertainty of the W cross-section at the
Tevatron (due to the experimental errors on the data in
the global fit) has decreased to about ±1.5% while that
for the Higgs has increased to about ±8% for varying
αS(M2

Z), and that the correlation has disappeared. For
αS(M2

Z) fixed at 0.119 σW is again largely unaffected,
but the uncertainty of σH now more than halves to about
+3−4.5%, reflecting the fact that this time the maximum and

minimum Higgs cross-sections for variable αS correspond
to αS(M2

Z) = 0.1215 and αS(M2
Z) = 0.116 respectively.

With αS(M2
Z) fixed there is now even a very slight anti-

correlation between the cross-sections.
The extrema in σW , represented by P and R, corre-

spond roughly to variations in the quark distributions at
x ∼ 0.04, while the extrema in σH , represented by Q and
S, correspond to variations in the gluon distribution at
x ∼ 0.06 and αS(M2

Z). The values of x sampled at the
Tevatron are an order of magnitude greater than at the
LHC. This, coupled with the fact that it is a proton–
antiproton collider, rather than a proton–proton collider,
complicates the interpretation of the extremes of the cross-
sections in terms of partons.

The up quark distribution for each extrema set with
fixed αS(M2

Z) is shown in Fig. 10a and the gluon distribu-
tion in Fig. 10b. The corresponding distributions obtained
when αS(M2

Z) is allowed to vary are shown in Fig. 11. We
first consider the cases of the maximum and minimum W
cross-sections, which are insensitive to whether αS is left
to vary or not. For discussion purposes, let us consider
only the u and d quark flavour contributions. Then the W
cross-section is roughly proportional to

u(x1)d(x2) + d(x1)u(x2) + ū(x1)d̄(x2) + d̄(x1)ū(x2) (15)

where 1 refers to the proton and 2 to the antiproton and
x1x2 = M2

W /s. Hence the average value of xi = 0.04.
This is sufficiently large that there is a distinct difference
between the quark and antiquark distributions, and the
contribution to the cross-section from the quark contribu-
tion is the greater. Hence, one can decrease the cross-sec-
tion by replacing a quark by its antiquark at x = 0.05,
or vice versa. Of course, there is a fundamental constraint
in doing this due to the sum rule for each valence quark.
However, the only real experimental constraint is from
the CCFR F3(x, Q2) data, all other structure function
data being insensitive to the distinction between quark
and antiquark. In the optimum global fit most data would
like there to be more quarks at high x, while the CCFR
F3(x, Q2) data would prefer more valence quarks at x ≤
0.1. This leads to a compromise where for the best fit the
CCFR F3(x, Q2) data at low x are undershot. The min-
imum σW is therefore achieved mainly by this exchange
of quark for antiquark, which most data are happy with,
and hence the deterioration in χ2 at P (and P∗) is al-
most entirely from the description of the CCFR F3(x, Q2)
data. Hence, both the gluon and quark distribution for
P (and P∗) are hardly changed, as seen in Figs. 10 and
11, but u − ū and d − d̄ decrease for x ∼ 0.05. Going in
the other direction, an increase in qV (0.05) and the con-
sequent decrease in the valence quarks at higher x causes
a large penalty in χ2 and the maximum σW is achieved
in a different manner. At x ∼ 0.05 the quark evolves
much more slowly than at x ∼ 0.005 and the density at
Q2 ∼ 10, 000 GeV2 is determined largely by the input
value, and modified by the rate of evolution. Hence the
maximum σW is achieved by having a large quark dis-
tribution at x ∼ 0.05 at low Q2 and also by having an
enhanced gluon at x ∼ 0.05 to increase evolution. These
are displayed in Figs. 10 and 11. The deterioration in χ2

then comes mostly from the low Q2 quarks causing an
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Fig. 8. The up quark and gluon distributions at Q2 = 10 and 104 GeV2 in the extrema global fits on the ∆χ2 = 50 contour of
the σW,H(LHC) plot of Fig. 7 for αS(M2

Z) fixed at 0.119

overshooting of NMC structure function data, but there
is also a contribution due to the enhanced gluon at x ∼ 0.1
causing it to be smaller for x > 0.1 and hence fitting the
Tevatron jet data less well.

The extrema of the Higgs cross-section are also slightly
complicated. It is not possible to simply increase or de-
crease the gluon in a range centered on x ∼ 0.05 because
this is precisely the x region where the majority of the
gluon’s momentum is carried, and this total is very well
constrained by the momentum sum rule and the accurate
high x quark determination. Therefore, for fixed αS(M2

Z)
the change in σH is largely reliant on the fact that this
total cross-section actually probes quarks within about an
order of magnitude either side of the central production
value of x = MH/

√
s. Hence, as we see from Fig. 10 the

maximum cross-section is obtained from the gluon in set
Q∗ which is slightly reduced for x < 0.04 and more en-
hanced for x > 0.04 and the minimum cross-section is ob-
tained from the gluon in set S∗ which is slightly increased
for x < 0.04 and more reduced for x > 0.04. In both
cases those data sets sensitive to the small x and large x
gluon, i.e., HERA structure function data and Tevatron

jet data respectively, are those for which the description
deteriorates. When αS(M2

Z) is allowed to go free it varies
by about ±0.003 and there is a large increase in the vari-
ation of σH . This is not only because σH ∝ α2

S but also
because the HERA data anti-correlate αS and the small
x gluon. Therefore, in set Q, for example, the increased
value of αS(M2

Z) allows the small x gluon to get much
smaller, and the high x gluon much larger, compared to
set Q∗. This compensation between αS and the small x
gluon also means that HERA data remains well fit, and
it is the jet data (particularly CDF), sensitive to large x,
and the large αS-phobic BCDMS data, for which the de-
scription deteriorates. Similar considerations apply to set
S as compared to S∗. Here it is the D0 jet data and the
small αS-phobic SLAC and NMC data that are badly fit.

For ∆χ2 = 50 the Hessian approach gives an uncer-
tainty of ±1.2% for σW and ±3% for σH , at the Tevatron
energy. In simplistic terms this is in good agreement, but
a little smaller for the gluon-sensitive Higgs cross-section.
However, in this case we see from Fig. 9 a very marked
asymmetry on the contour plot. For fixed αS(M2

Z) the el-
lipses are certainly not centered on the best fit values, and
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Fig. 9. As for Fig. 7, but for the Tevatron energy of
√

s =
1.8 TeV

for varying αS(M2
Z) we see that χ2 is clearly increasing

far more rapidly for increases in the predicted W cross-
section than for corresponding decreases. Thus, it is clear
that within the framework of this fit, increases of the cross-
section of much more than 3% are completely ruled out,
whereas decreases of the same amount are much more ac-
ceptable. This information would be largely lost in the
Hessian approach, and for these quantities the Lagrange
multiplier method does supply some important additional
information.

6 The ratio of W − to W + production
at the LHC

The ratio of the W− to the W+ production cross-sections
at hadron colliders is a particularly interesting observable.
The measurement is expected to be quite precise (better
than ±1% at the LHC, see e.g. [34]), since many of the
experimental uncertainties cancel in the ratio. The uncer-
tainty in the prediction of the ratio at the LHC can be
deduced from the ∆χ2 profile shown in Fig. 12. Taking, as
before, the ∆χ2 = 50 measure, we obtain ∆(W−/W+) =
±1.3%, and the Hessian approach is in very good agree-
ment with this. Since the W−/W+ ratio is sensitive to the
ratio of the d and u quark distributions, it is not surpris-
ing that the increase in χ2 is almost entirely due to the
NMC F2(n)/F2(p) data [25].

A detailed discussion of the W−/W+ ratio may be
found in [35]. Consider, for instance, the ratio as a function
of the W rapidity y

dσ/dy(W−)
dσ/dy(W+)

� d(x1)ū(x2)
u(x1)d̄(x2)

� d(x1)
u(x1)

, (16)

where x1 = MW ey/
√

s = 0.0057ey at the LHC. In (16)
we have ignored, for simplicity, the contributions involv-
ing strange and heavier quarks. Thus a measurement of
the ratio at large y would provide a direct determination
of d/u at large x. For example, for y � 4, we measure d/u
at x ∼ 0.3 at the LHC. Of course, it is the decay lepton
rapidity that is measured, rather than the parent W ra-
pidity, and so the ratio in a given rapidity bin will have a
greater uncertainty than that for σ(W−)/σ(W+).

7 The moments of the (u–d) distribution

The parton distribution functions of the nucleon are fun-
damental quantities that should, in principle, be calculable
from first principles in QCD. In particular, the x moments
of parton distributions at a given scale Q2 are related, by
the operator product expansion, to a product of perturba-
tively calculable Wilson coefficients and non-perturbative
matrix elements of quark and gluon operators. The latter
can be computed using lattice QCD and, indeed, in recent
years the precision of the lattice calculations has improved
significantly. Although in principle the lattice results can
be related to moments of physical structure functions, in
practice it is more efficient to use parton distributions de-
termined in a global fit to represent the physical ‘data’.
Comparisons of recent lattice moment calculations with
the predictions of earlier MRS parton distributions are
encouraging, see for example [13,14].

In order to quantify the agreement between the lat-
tice calculations and the parton distribution predictions
it is obviously important to know the uncertainties in the
latter. It is straightforward to apply the Lagrange multi-
plier method used in previous sections to determine the
uncertainties in observable cross-sections to the moments
of parton distributions.

To avoid contamination from gluon contributions, the
lattice calculations focus on the moments of non-singlet
quark operators. For example, lattice results are available
for the first three moments of the combination u − d, i.e.,

Mu−d
N (Q2) =

∫ 1

0
dx xN−1 [u(x, Q2) − d(x, Q2)] (17)

with N = 2, 3, 4. The predictions of the MRST2001 set
(at Q2 = 4 GeV2) for these moments are given in Table 1.

The ∆χ2 contour plot for the (percentage) variation
of the second and third moments about their predicted
values is shown in Fig. 13. We again show the ∆χ2 = 50
and 100 contours corresponding to the fixed αS analysis,
but there is evidently little difference between the fixed
and variable coupling results in this case.

As expected, there is a strong positive correlation be-
tween the two moments. Using the ∆χ2 = 50, varying
αS criterion for defining a conservative error, we obtain
errors of ±4.2%, ±4.8% and ±5.0% for the second, third
and fourth moments respectively. The corresponding pre-
dictions for the errors on the moments are also given in
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Fig. 10. The up quark and gluon distributions at Q2 = 10 and 104 GeV2 found in the extrema global fits on the ∆χ2 = 50
contour of the σW,H(Tevatron) plot of Fig. 9 with αS(M2

Z) fixed at 0.119

Table 1. The increasing relative error with increasing mo-
ment is to be expected – higher moments probe the x → 1
region where there are fewer DIS structure function data.
Again we notice that there is a small asymmetry in the
contours – the increase in χ2 when both moments increase
being less severe than when both moments decrease.

The uncertainties on the moments using the Lagrange
multiplier method with a fixed αS are slightly smaller:
±4.1%, ±4.3% and ±4.7% for the second, third and fourth
moments respectively. These results are in excellent agree-
ment with the (fixed αS) Hessian approach, where the
corresponding errors are ±3.9%, ±4.3% and ±4.6%.

Since, as we have already seen in Sect. 4, the u quark
at high x is far more constrained than the d quark, the
allowed variation in these moments is mainly due to vari-
ations in the dV distribution. The minimum extremum (H
in Fig. 13) of the moments is therefore due to the largest
allowed dV distribution at high x and arises from a sim-
ilar set of partons to those for the maximum FCC

2 (e+p).
Thus, as in this previous case, it is mainly the compar-
ison to the BCDMS F2(ed) measurements which causes
the deterioration in the quality of the fit. The maximum

Table 1. The moments and their errors of the (u–d) distribu-
tion, (17), predicted at Q2 = 4 GeV2 using MRST2001 par-
tons [9]

N Mu−d
N (4 GeV2) % error

2 0.1655(70) 4.2
3 0.0544(26) 4.8
4 0.0232(12) 5.0

of the moments (G in Fig. 13) corresponds roughly to the
minimum dV distribution at high x and it is largely the
fit to the F2(n)/F2(p) ratio that breaks down.

For a number of years, lattice QCD has been used to
calculate the moments of nucleon structure functions from
first principles. The most recent comprehensive results are
from the LHPC-SESAM [13] and QCDSF [14] collabo-
rations. Although the comparisons with experiment (via
parton distributions obtained from global fits) are encour-
aging, there are still many problems to be overcome, for
example finite lattice spacing and volume effects, renor-
malization and mixing of operators, unquenching and chi-
ral extrapolation to physical quark masses. A compari-
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Fig. 11. As for Fig. 10 but with αS(M2
Z) allowed to vary

son with the recent lattice results [13,14] and the above
MRST2001 moment predictions reveals that (a) the errors
in the latter are at present significantly smaller than in the
former, especially for the higher moments, and (b) the
lattice results for the moments are systematically higher.
The explanation appears to be that the linear chiral ex-
trapolation used in the lattice determinations is not valid
– non-perturbative long-distance effects in the nucleon
gives rise to nonlinear, non-analytic dependence on mq

[36]–[40] which is particularly important at small mq. In
the most recent analyses (see for example the comprehen-
sive study in [41]), the experimental (i.e., pdf) values for
the moments are used to constrain a priori unknown non-
perturbative parameters which enter in the non-analytic
terms in the chiral extrapolation formula. It will be inter-
esting to investigate the effect of using the new MRST2001
moment predictions and errors in such studies.

8 Comparison between different
central parton sets

So far in this paper we have investigated the uncertainty
on physical quantities coming from the experimental er-

ror of the measurements used to determine the parton
distributions. We have discussed both the Hessian and
Lagrange Multiplier approaches, concluding that the lat-
ter is in principle preferable, but recognizing the practical
advantages of the former. We have compared the results
each provide for the uncertainties using the ∆χ2 = 50 cri-
terion, noting that they are generally in good agreement.
The Hessian approach does tend to give slightly smaller
uncertainties for the quantities sensitive to the least well-
determined partons, i.e., σH which is sensitive to the gluon
distribution and FCC

2 (e+p) which is sensitive to the high-
x down quark distribution. This is probably partly due
to the neglected effect of the not entirely redundant pa-
rameters, and partly due to errors associated with those
eigenvectors which do not respect the quadratic approx-
imation for ∆χ2 too well, which indeed are mainly con-
cerned with the gluon and high x down quark. However,
the discrepancy is quite small, and we judge that we can
trust the Hessian approach, at least for ∆χ2 in the region
of 50 or less, to give quantitative results. Hence, for fixed
αS(M2

Z) = 0.119, we have made available 30 parton sets
corresponding to the 15 different eigenvector directions in
the space of variation of parton parameters away from
their values at the minimum χ2 of the global fit, each set
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Fig. 12. The variation of χ2 obtained by performing global fits
with σ(W −)/σ(W+) fixed at different values in the neighbour-
hood of the value obtained in the unconstrained MRST2001 fit.
For ∆χ2 = 50 we see that the uncertainty in the ratio is ±1.3%

corresponding to an increase in χ2 of 50. These can easily
be used to obtain the error on any physical quantity, as
outlined in Sect. 2. We have also made available various
parton sets with fixed and varying αS(M2

Z) correspond-
ing to extreme variations in the predictions for various
important cross-sections and other relevant observables.

We note that the uncertainties obtained due to the er-
rors on the experimental data are generally very small, of
the order of 1 − 5%, except for quantities sensitive to the
high-x down quark and gluon, where they can approach
10%. However, in all of this we have implicitly assumed
that the theoretical procedure is precisely compatible with
the data used, we have not considered the uncertainties
due to (i) the data sets chosen, (ii) the choice of start-
ing parameterizations, (iii) the heavy target corrections,
etc. In practice this is far from true, as discussed in the
Introduction. In this final section we acknowledge this to
some extent and investigate qualitatively the impact of the
initial assumptions going into the fit on the uncertainty
on some quantities. In order to do this we first perform
a slightly updated fit of our own (which includes minor
modifications in terms of parameterization and the treat-
ment of errors and data sets) so as to produce the best set
of up-to-date partons. This was partially inspired by the
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Fig. 13. The ∆χ2 contours obtained by performing global
fits with the values of the N = 2 and N = 3 moments of
the u–d distribution fixed in the neighbourhood of their val-
ues predicted by the MRST2001 global fit. The dashed and
solid curves correspond to fits with αS(M2
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respectively

question of why CTEQ6 [5] gives a much better fit to the
Tevatron jet data than MRST2001, but also by the avail-
ability of new ZEUS data. We call the new set MRST2002
partons6.

8.1 CTEQ6, MRST2001
and a new parton set (MRST2002)

We found that we can improve the fits to jets within the
global fit by a couple of modifications. In order to obtain
the best global fit with partons input at Q2

0 = 1 GeV2 we
had previously found that we needed a parameterization
which allows the gluon to go negative at small x. Hence
we used

xg(x, Q2
0) = Ag(1 − x)ηg (1 + εgx

0.5 + γgx)xδg

−A−(1 − x)η−x−δ− , (18)

where A− ∼ 0.2, δ− ∼ 0.3 and η− was fixed at ∼ 10, so as
not to affect the high x distribution. Unexpectedly, allow-
ing η− to vary to ∼ 25 resulted in a slight improvement in
the fit to Tevatron jets. We also modified our treatment of
the errors for the Drell–Yan data [28]. The fit to these data
actually competes with that to the jets, and using only sta-
tistical errors, as in our previous studies (the systematic

6 The MRST2002 parton set can be found at
http://durpdg.dur.ac.uk/hepdata/mrs
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Fig. 14. The CTEQ6 [5] and MRST2002 gluon compared to
MRST2001 [9] gluon at Q2 = 10 and 104 GeV2

errors being defined a little vaguely), over-emphasizes the
effect of the Drell–Yan measurements. Adding 5% system-
atic errors in quadrature to the statistical errors (which is
probably the best approach [28]) also improves the fit to
the jet data. Both these modifications appear appropriate
and are implemented in our updated set. Also included in
the new analysis is the new ZEUS high-Q2 data [42], which
has little effect on the partons. The only significant change
in the MRST2002 partons, compared to MRST2001 par-
tons [9], is an increase in the gluon at high x, which we
show in Fig. 14. The fit to the Tevatron jet data now has
χ2 = 154/113 compared to χ2 = 170/113 for MRST2001,
and the fit to The Drell–Yan data with 5% systematic er-
rors has χ2 = 187/136. The quality of fit for all other data
sets is almost identical to that for the MRST2001 partons.

The CTEQ6 partons are very similar to the MRST2001
(and MRST2002) partons in most aspects. However, in
this CTEQ analysis [5] a number of different choices are
made about the way in which the fit is implemented, which
leads mainly to a significantly different gluon distribution.
These differences are: the development of a different type
of parameterization for the partons, which allows for a
different shape at very high x; CTEQ omit data below
Q2 = 4 GeV2, compared to our choice of Q2 = 2 GeV2;

they do not fit to some data sets used in [9], i.e., they
omit SLAC and one H1 high-Q2 set of F2 data; they use
10% systematic errors (in quadrature) for Drell–Yan data;
moreover, CTEQ have a positive-definite small-x gluon at
their starting scale of Q2

0 = 1.69 GeV2. They also use a
massless charm prescription and there are various other
minor differences as compared with MRST7.

The CTEQ6 gluon is also shown in Fig. 14. Clearly
MRST2002 has a similar high-x gluon to CTEQ6, both
being larger than MRST2001. However, the MRST gluons
are different from the CTEQ6 gluon at smaller x due to
their freedom to have a negative input distribution, and
due to slight differences in the choice of data sets fitted.
The different assumptions made in obtaining the CTEQ
partons, although they improve the quality of the jet fit,
do not lead to the best fit when including the data sets
omitted by CTEQ and the fit is not good at all for data
with Q2 < 4 GeV2. Hence, within the context of trying
to obtain as inclusive a global fit as possible using NLO
QCD, we take MRST2002 to be the best set of parton
distributions.

8.2 Comparison of predictions for σW and for σH

The predictions for W and Higgs cross-sections using the
different partons are shown in Fig. 15. Since MRST2002
only differs from MRST2001 in the high x gluon, to which
these cross-sections are insensitive, the predictions for
MRST2002 are very similar to those of MRST2001.
(Hence our decision to keep MRST2001 partons as the
base set for this paper). However, the corresponding pre-
dictions obtained using the CTEQ6 partons are quite dif-
ferent. At the LHC the prediction for σW is similar, but
σH is towards the top of our (qualitative) 95% confidence
level. From Fig. 14 this is clearly due to the larger gluon
in the x ∼ 0.005 region, which is due to the positive def-
inite input for the CTEQ6 gluon. At the Tevatron the
discrepancy between CTEQ6 and MRST is even larger.
The CTEQ6 predictions for both σW and σH are effec-
tively completely outside our expectations. The reason
for the small prediction of σH is evident from Fig. 14 –
the CTEQ6 gluon is considerably smaller in the region of
x = 0.1. This, in turn, is then responsible for a slower
evolution of the quarks, making them smaller at high Q2

and hence making σW smaller. Presumably the difference
comes about because CTEQ6 use a more restricted form
of the gluon and omit one H1 data set and Q2 ≤ 4 GeV2

data which prefer larger dF2(x, Q2)/d lnQ2. Whatever the
precise reasons for the discrepancies, it is clear that dif-
ferent choices for the overall framework of the global fit
can completely outweigh the uncertainties due to errors
on the data actually chosen to go into the fit. It would be
easy to illustrate similar types of discrepancy comparing
to other alternative sets of partons – in particular, due to
the absence of the Tevatron jets in the fits, many of the
parton sets in [1]–[7] have rather smaller gluons at large x,

7 The way in which these different assumptions lead to an
improved fit to the Tevatron jet data is outlined in [43]
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Fig. 15. The CTEQ6 [5] and MRST2002 predictions of σW , σH at the LHC and Tevatron energies, shown on the ∆χ2 contour
plots centered on the MRST2001 partons [9]. The ∆χ2 contours are taken from Figs. 7 and 9 respectively, for the case in which
αS(M2

Z) is a free parameter. The inner contour with ∆χ2 = 50 is taken to represent the error on the observables σW and σH

arising from the experimental errors of the data that are used in the global fit

and would have different predictions for various quantities
sensitive to the high-x gluon.

8.3 Comparison of predictions for αS(M2
Z)

We also find a large variation in the values of αS(M2
Z) ex-

tracted from the fits of the different collaborations:
CTEQ6 [5], ZEUS [7], MRST2001 [9], H1 [6], Alekhin [3]
and Giele et al. (GKK) [2]. The resulting values of αS(M2

Z)
are listed in Table 2, together with the determination of
this work (MRST2002), in order of decreasing tolerance
(
√

∆χ2), which is reflected in the size of the correspond-
ing experimental error. Not all are presented as determi-
nations of αS(M2

Z), but all are extracted using the same
criteria as for the uncertainty on partons in the respec-
tive fit, and hence should be as reliable. Clearly there is
a very large variation, with some very low values. The
uncertainties due to experimental errors are determined
in different fashions in each case, and a summary can be
found in [44]. We use ∆χ2

eff for the ZEUS determination
[7], because they use the offset method for determining un-
certainties which for ∆χ2 = 1 gives a larger uncertainty
than the more common Hessian method. ZEUS estimate
that this is equivalent to ∆χ2 ≈ 50 if they were to use the
same treatment of errors as CTEQ. We also use ∆χ2

eff for
the GKK value [2], because the uncertainties are obtained
using confidence limits, but the error quoted corresponds
to the one sigma usually associated with ∆χ2 = 1.

Table 2. Values of αS(M2
Z) and its error from different NLO

QCD fits

Group variation αS(M2
Z)

of χ2

CTEQ6 ∆χ2 = 100 0.1165 ± 0.0065(exp)

ZEUS ∆χ2
eff = 50 0.1166 ± 0.0049(exp) ± 0.0018(model)

±0.004(theory)

MRST02 ∆χ2 = 20 0.1195 ± 0.002(exp) ± 0.003(theory)

MRST01 ∆χ2 = 20 0.1190 ± 0.002(exp) ± 0.003(theory)

H1 ∆χ2 = 1 0.115 ± 0.0017(exp) +0.0009
−0.0005 (model)

±0.005(theory)

Alekhin ∆χ2 = 1 0.1171 ± 0.0015(exp) ± 0.0033(theory)

GKK ∆χ2
eff = 1 0.112 ± 0.001(exp)

The model errors incorporate such effects as the heavy
quark prescription and masses, parameterizations,
changes in the starting scale of evolution etc. The theory
error is often determined by variation of renormalization
and factorization scales, though MRST use an estimate
appealing to current knowledge of NNLO and resumma-
tions, which we feel is more reliable. Since each fit is cen-
tered on NLO QCD with scales equal to Q2, the “theory
errors” are very strongly correlated, and cannot therefore
be responsible for the differences. These discrepancies are
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undoubtedly due to the assumptions going into the fits,
mainly on which data sets are included and which cuts on
Q2 and W 2 are used.

MRST, who obtain the largest value of αS(M2
Z), use

the widest range of data sets and also the least conserva-
tive cuts8. CTEQ use only a slightly smaller number of
data sets but also cut data below Q2 = 4 GeV2, as de-
scribed previously. They also use a definition of the NLO
coupling which truncates the solution of the renormaliza-
tion group equation, whereas most other groups use the
full solution of the NLO equation. Both approaches are
equally correct, but the truncation of the solution leads
to a slightly higher value of αS(Q2) at scales below M2

Z ,
for the same value of αS(M2

Z), than the other method, and
thus tends to yield a lower αS(M2

Z). CTEQ also have a
very conservative estimate of the error, though it is meant
to be somewhat more than a one-sigma error. ZEUS and
Alekhin use a similar selection of data sets, i.e., HERA
DIS data (only ZEUS data in the former case) and a num-
ber of fixed target DIS data sets. Hence, it is unsurprising
that they obtain similar central values of αS(M2

Z), with re-
spective errors which are easily explained by their choices
of ∆χ2. H1 and GKK both use a small number of sets of
data: the former collaboration uses H1 DIS data [6,10] and
BCDMS fixed-target proton DIS data [22], while GKK use
older H1 DIS data [45] together with BCDMS and E665
[26] fixed-target proton DIS data. Both determinations are
heavily influenced by the BCDMS proton data set which
prefers rather small9 αS(M2

Z), and this feeds into the final
values. Also, both are strict in their statistical interpreta-
tion, obtaining small uncertainties, even with relatively
small data samples. Finally we note that only CTEQ and
MRST include the Tevatron jet data in their analyses.
This is relevant because of the αS–gluon correlation.

8.4 Final comment

From the discussion of the previous two subsections, it
is clear that different ideas about the best way to per-
form a NLO fit can lead to a wide variation in both the
central values and the errors of αS(M2

Z) as well as in pre-
dictions for physical quantities such as σW and σH . The
fact that the various ‘NLO’ fits can yield such different
outputs is disturbing, and is indicative of the uncertainty
arising from theoretical assumptions. Indeed, we have al-
ways believed that ‘theory’, rather than experiment, will
provide the dominant source of error [44]. We have al-
ready produced approximate NNLO parton distributions
and predictions [47] (based on the approximate splitting

8 The slightly different treatment in this work (MRST2002)
leads to a marginal raising of αS(M2

Z) as compared to
MRST2001 [9], as seen in Table 2. We still use ∆χ2 = 20 for
our one-sigma uncertainty, since if ∆χ2 = 50 corresponds to
90% confidence level, or 1.65 sigma, simple scaling implies that
one sigma corresponds to ∆χ2 = 50/(1.65)2, i.e. ∆χ2 = 20 to
a good approximation

9 Recall the determination αS(M2
Z) = 0.113 ± 0.005 from

BCDMS data alone [46]

functions [48] obtained from the known NNLO moments
[49]), and find, for example, that the NNLO W cross-sec-
tion at the Tevatron is 4% higher than at NLO, and believe
that this result is reliable. This change is somewhat larger
than the uncertainty due to experimental errors shown in
Fig. 9. Moreover, W production is likely to be subject to
smaller theoretical uncertainty than many other observ-
ables – particularly those directly related to the gluon.
Our estimates for the uncertainty in FL(x, Q2) at small x
are 10% or more even at Q2 = 10, 000 GeV2, and signifi-
cantly larger at lower Q2, for example. Hence, an under-
standing of theoretical uncertainties is clearly a priority
at present, and a preliminary attempt at this will be the
subject of a future publication [50].
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